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Abstract

Inspired by the demands of real-time climate and
weather forecasting, we develop optimistic on-
line learning algorithms that require no parame-
ter tuning and have optimal regret guarantees un-
der delayed feedback. Our algorithmsNDORM,
DORM+, and AdaHedgeDNarise from a novel
reduction of delayed online learning to optimistic
online learning that reveals how optimistic hints
can mitigate the regret penalty caused by delay.
We pair this delay-as-optimism perspective with
a new analysis of optimistic learning that exposes
its robustness to hinting errors and a new meta-

ial online learning algorithms provide robust performance in
many complex real-world online prediction problems such
as climate or weather forecasting.

In traditional online learning paradigms, the loss for round

t is revealed to the learner immediately at the end of round

t. However, many real-world applications produce delayed
feedback, i.e., the loss for rouhds not available until round

t + D for some delay perio®.! Existing delayed online
learning algorithms achieve optimal worst-case regret rates
against adversarial loss sequences, but each has drawbacks
when deployed for real applications with short horizons
T. Some use only a small fraction of the data to train
each learner (Weinberger & Ordentlich, 2002; Joulani et al.,

algorithm for learning effective hinting strategies
in the presence of delay. We conclude by bench-
marking our algorithms on four subseasonal cli-
mate forecasting tasks, demonstrating low regret
relative to state-of-the-art forecasting models.

2013); others tune their parameters using uniform bounds on
future gradients that are often challenging to obtain or overly
conservative in applications (McMahan & Streeter, 2014;
Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin
et al., 2020; Hsieh et al., 2020). Only the concurrent work
of Hsieh et al. (2020, Thm. 13) can make use of optimistic
hints and only for the special case of unconstrained online

1. Introduction gradient descent.

Online learning is a sequential decision-making paradigm irin this work, we aim to develop robust and practical algo-
which a learner is pitted against a potentially adversarial erdthms for real-world delayed online learning. To this end,
vironment (Shalev-Shwartz, 2007; Orabona, 2019). At timewe introduce three novel algorithmsNDORM, DORM+,

t, the learner must select a play from some set of possible and AdaHedgeDNthat use every observation to train the
playsW . The environment then reveals the loss function learner, have no parameters to tune, exhibit optimal worst-
and the learner pays the cdgfw:). The learner uses infor- case regret rates under delapd enjoy improved perfor-
mation collected in previous rounds to improve its plays inmance when accurate hints for unobserved losses are avail-
subsequent roundQptimisticonline learners additionally able. We begin by formulating delayed online learning as
make use of side-information or OhintsO about expected fa-special case of optimistic online learning and use this
ture losses to improve their plays. Over a period of lefigth  Odelay-as-optimismO perspective to develop:

the goal of the learner is to minimizegret, an objective that

quantiPes the performance gap between the learner and the, ' A formal reduction of delayed online learning to opti-
best possible constant play in retrospect in some competitor  istic online learning (Lems. 1 and 2)

setU: Regret = su © L T(wy)! 1i(u). Adversar-

gret Puru =1 (W)t te(u) 2. The brst optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning
regret bounds that reveals the robustness of optimistic
algorithms to inaccurate hints (Thms. 3 and 4),
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4. The brst general analysis of follow-the-regularized-incorporate this hint before making plaw .
leader (Thms. 5 and 10) and online mirror descen
algorithms (Thm. 6) with optimism and delay, and

5. The brst meta-algorithm for learning a low-regret opti-
mism strategy under delay (Thm. 13).

tIn standard formulations of optimistic online learning, the
convex pseudo-logg(w,) is added to the standard FTRL
or OMD regularized objective function and leads to op-
timistic variants of these algorithms: optimistic FTRL

OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-

We validate our algorithms on the problem of sgbseasoneghistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let
forecasting in Sec. 7. Subseasonal forecastlnngredlctln%t # " (Wys 1) andg, # "1 (w;) denote subgradients of

prec_lpltanon and temp_erature 2-6 weeks in advanceN|_s he pseudo-loss and true loss respectively. The inclusion of
crucial task for allocating water resources and preparmc%lI

for weather extremes (White et al., 2017). Subseason r}ezp;gp;g;;::t !eads to the following linearized update
forecasting presents several challenges for online learning

algorithms. First, real-time subseasonal forecasting suffers wy.; = argmin %:.¢ + €+1 , W&+ $#(w), (OFTRL)
from delayed feedback: multiple forecasts are issued before wi W

receiving feedback on the Prst. Second, the regret horizonsWt+1 = argmin %; + g+1 ! 6, W&+ By (W, wy)

are short: a common evaluation period for semimonthly wiw

forecasting is one year, resulting in 26 total forecasts. Third, with go = 0 and arbitrary wo (SOOMD)
fprecaster; cannot have difpcult-to-tune parameters in re?/yl'heregm # RYis the hint subgradient $ 0is a regular-
time, practical deployments. We demonstrate that our Alzation parameter, and is proper regularization function
gorithms DORM, DORM+, and AdaHedgeD sucessfully '

. . that is1-strongly convex with respect to a nojg . The op-
overcome these challenges and achieve consistently low . . -
i imistic learner enjoys reduced regret whenever the hinting
regret compared to the best forecasting models.

error)ge+1 ! @i+1 )+ is small (Rakhlin & Sridharan, 2013a;
Our Python library for Optimistic Online Learning under Joulani et al., 2017). Common choices of optimistic hints
Delay (PoolD) and experiment code are available at include the last observed subgradient or average of previ-
https://github.com/gel3aspohler/poold ously observed subgradients (Rakhlin & Sridharan, 2013a).
We note that the standard FTRL and OMD updates can be

. . |
Notation  For integeysa, b, we use the shortharid ! recovered by setting the optimistic hints to zero.

{1,...,00 andgap ! ib:agi. We say a functiorf is
proper if it is somewhere bnite and nevér . We let . . . L
"fw)= {g#RI:f(U)$ fw)+o%,u! wg u# 3 Online Learning with Optimism and Delay
RY} denote the set afubgradient®ff atw # RY and sayf

. . ) In the delayed feedback setting with constant delay of length
is u-strongly convexver a convex saV ( intdom f with

) o D, the learner only observeési)}ff’ before making play
[?SpeCt to‘a W;h dual ?orm) 3(‘)’ if 'W u# XV arl1dg #2& Wi+ . Inthis setting, we propose counterparts of the OFTRL
(w), we havef (u) $ f(w)+ %, u! w&+ 5)w! u)*. and SOOMD online learning algorithms, which we call

For diﬁer?ntiable#'f, we dlefi]e the Bre'gman di\:jergence optimistic delayed FTRLDFTRL) anddelayed optimistic
By (w,u) b #(w) ! #(u) 19%* #(u),w ! u&WedebPne ,ine mirror descentOOMD) respectively:

diam(W) = inf w wiw )Ww! w#, (r). ! max(r, 0),
andmin(r,s)+ ! (min(r,s))+ . Wie1 =argmin %usp + Neer , W& $#(w)

w!
(ODFTRL)
Wi = argmin %isp + hesr ! he, W&+ By (W, wy)

Standard online learning algorithms, such as follow the reg- ! )

ularized leader (FTRL) and online mirror descent (OMD) ~ With ho! 0 and arbitrary wo, (DOOMD)
achieve optimal worst-case regret against adversarial losg, pint vectorh.; . Our use of the notatioh,.; instead
sequences (Orabona, 2019). However, many loss sequencgsy . for the optimistic hint here is suggestive. Our regret
encountered in applications are not truly adversai:  4naiysis in Thms. 5 and 6 reveals that, instead of hinting only

timistic online learning algorithms aim to improve perfor- ¢, the Ofuture® missing lags: , delayed online learners

mance when loss sequences are partially predictable, whilg,q1d uses hints, that guess at the summed subgradients
remaining robust to adversarial sequences (see, e.g., Azougf | delayed and future lossels; = - t sp Os
s=t$D .

& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-
ran, 2013b; Steinhardt & Liang, 2014). In optimistic online -
learning, the learner is provided with a OhintO in the forn?'l' Delay as Optimism
of a pseudo-los§ at the start of round that represents To analyze the regret of the ODFTRL and DOOMD algo-
a guess for the true unknown loss. The online learner carithms, we make use of the prst key insight of this paper:

2. Preliminaries: Optimistic Online Learning
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Learning with delay is a special case of learning gr+1 ! O,then u# W, theSOOMDiteratesw; satisfy
with optimism.

. . Regret (u) + B+ (u,wo)+
In particular, ODFTRL and DOOMD are instances of I

OFTRL and SOOMD respectively with a particularly ObadO 37 Lo hubef)gi! &), )0+ Gie1 ! 8.
choice of optimistic hint;+1 that deletes the unobserved
loss subgradients p +1: ¢ Both results feature the robust Huber penalty (Huber, 1964)

Lemma 1 (ODFTRL is OFTRL,with a bad hintf) ODFTRL
iSOFTRLWith §+1 = Nis1 ! ooy psq s

Lemma 2(DOOMD is SOOMD with a bad hint)DOOMD  in place of the more common squared error term
is SOOMDwWith +1 = €t + Gtsp ! Ot + hyeg ! hy = %)gt I &)?. Asaresult, Thms. 3 and 4 strictly improve the
hisp 1L rate-optimal OFTRL and SOOMD regret bounds of Rakhlin

& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,
The implication of this reduction of delayed online learning Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a
to optimistic online learning is thanyregret bound shown previously undocumented robustness to inaccurate gints
for undelayed OFTRL or SOOMD immediately yields a We will use this robustness to large hint erjgg ! )~ to
regret bound for ODFTRL and DOOMD under delay. As establish optimal regret bounds under delay.

we dempnstrate in the remainder Of. th_e paper, this no_veAs an immediate consequence of this regret analysis and our
connection between delayed and optimistic online leammqjelay-as-optimism perspective, we obtain the brst general

allows us to bound the regret of optimistic, self-tuning, andanalyses of FTRL and OMD with optimism and delay
tuning-free algorithms for the brst time under delay. '

hubetx,y) ! 3x* 1 Z(Ix|! lyDF + min(3x?, lylIx|)

s=t$D+1 s

. o ) Theorem 5 (ODFTRL regret) If # is nonnegative, then,
Finally, it is worth ref3ecting on the key property of OFTRL for gil u # W , theODFTRL iteratesw; satisfy
and SOOMD that enables the delay-to-optimism reduction:

each algorithm (2jepends @ andgi+1 only through the Regret (u) + $#(u)|+ %! tT:1 bee  for
sumgsit + 6+1 .- For the ObadO hints of Lems. 1 and 2, Yt
these sums are observable even thaygande.1 are not bee tohube(hi! o igp 8s)*1)90)).
separately observable at timelue to delay. A number of tnoqrem 6 (DOOMD regret) If #
alternatives to SOOMD have been proposed for optimistiq1T+l | grsps1 1, then, for allu # W, the DOOMD
OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;iterateswt satisfy
Kamalaruban, 2016). Unlike SOOMD, these procedures all |
incorporate optimism in two steps, as in the updates Regret (u) + By (u,wo)+ & th1 bio for

|

bio ! hubef)h;! tsztg;D Os)*,)0tsp + hesr ! De)w).

is differentiable and

Wiig/2 = a@rgming,, w %, W&+ By (W, Wig1/2) and
Wiy =aGMINyy w %rea s WE By (W Wear2) (D 5 oqits show a compounding of regret due to delay:
theb e term of Thm. 5 is of siz&O(D + 1) whenever
hy)» = O(D +1), and the same holds fb; o of Thm. 6
if Jhisr ! 0¢)» = O(1). An optimal setting ofs therefore
eliversO( (D +1) T) regret, yielding the minimax opti-
mal rate for adversarial learning under delay (Weinberger
& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-
ened value of optimism in the presence of delay: in addition

To demonstrate the utility of our delay-as-optimism perspecto providing an effective guess of the future subgradient
tive, we Prst present the following new regret bounds ford:, an opymistic hint can approximate the missing delayed
OFTRL and SOOMD, proved in Apps. B and C respectivelyfeedback (' s 5 9s) and thereby signibcantly reduce the

penalty of delay. If, on the other hand, the hints are a poor
proxy for the missing loss subgradients, the ndvwaber
term ensures that we still only pay the minimax optimal
" D +1 penalty for delayed feedback.

described in Rakhlin & Sridharan (2013a, Sec. 2.2). Iti
unclear how to reduce delayed OMD to an instance of one o
these two-step procedures, as knowledge of the unobserv
0; is needed to carry out the brst step.

3.2. Delayed and Optimistc Regret Bounds

Theorem 3(OFTRL regret) If # is nonnegative, then, for
allu # W, theOFTRL iteratesw; satisfy

I
Regret (u) + $#(u)+ £ [ hubef)gi! &)-,)g)").
aret (W) W i 0ot! 8)-.)80)-) Related work A classical approach to delayed feedback

in online learning is the so-called OreplicationO strategy
in whichD + 1 distinct learners take turns observing and
2For SOOMDg: + t+1 ! 6t = Qut+ Gee1 ! (Qutr 1+ 6t). responding to feedback (Weinberger & Ordentlich, 2002;

Theorem 4 (SOOMD regret) If # is differentiable and
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,introduces the AdaHedgeD algorithm, an adaptive variant
2005). While minimax optimal in adversarial settings, thisof ODFTRL that isself-tuning a sequence of regulariza-
strategy has the disadvantage that each learner only setsn parameter$; are set automatically using new, tighter
Dﬂl losses and is completely isolated from the other replibounds on algorithm regret. All three algorithms achieve the
cates, exacerbating the problem of short prediction horizonsninimax optimal regret rate under delay, support optimism,
In contrast, we develop and analyze non-replicated delayednd have strong real-world performance as shown in Sec. 7.
online learning strategies that use a combination of opti-

mistic hinting and self-tuned regularization to mitigate the4 Tuning-free Learning with Optimism
effects of delay while retaining optimal worst-case behavior. and Delay

To our knowledge, Thm. 5 and its adaptive generalization . _
Thm. 10 provide the Prst general analysis of delayed FTRLIR€ret matching (RM) (Blackwell, 1956; Hart & Mas-
with optimism, apart from the concurrent work of Hsieh COl€ll, 2000) and regret matching+ (RM+) (Tammelin et al.,

et al. (2020, Thm. 1). Hsieh et al. (2020, Thm. 13) and2_0,15) are online learning algorithms that have strong em-
Quanrud & Khashabi (2015, Thm. 2.1) focus only on dep|r|eel performance. RM was developed to bnd correlated
layed gradient descent, Korotin et al. (2020) study Gen€auilibria in two-player games and is commonly used to
eral Hedging, and Joulani et al. (2016, Thm. 4) and Quarinimize regret over the simplex. RM+ is a modibcation
rud & Khashabi (2015, Thm. A.5) study non-optimistic of RM designed to accelerate convergence and used to ef-

OMD under delay. Thms. 5, 6, and 10 strengthen thesfectively solve the game of Heads-up Limit Texas HoldOem
results from the literature which feature a sum of subPOKer (Bowling etal., 2015). RM and RM+ support neither
t$1 optimistic hints nor delayed feedback, and known regret

radient norms (> « orD ) in place of
)gh | - ()S_tS;E?/;r?Sizw the al)oge)nc)e ofpo timism bounds have a suboptimal scaling with respect to the prob-
t' s=ispYs)r- ) . PUMISM, 10, dimensiord (Cesa-Bianchi & Lugosi, 2006; Orabona
the Iatter can be signipcantly smaller: e.g., if the gradmnti Pal, 2015). To extend these algorithms to the delayed
gs are i.i.d. mean-zero vectors, the former has $iB) and optimistic setting and recover the optimal regret rate,

while the latter has expectati@( D). In the absence of we introduce our generalizatiordglayed optimistic regret
optimism, McMahan & Streeter (2014) obtain a bound com- 9 y P 9

parable to Thm. 5 for the special case of one-dimensionamatChlng(DORM)
unconstrained online gradient descent. Wis1 = Wieg /%, Wieg & for (DORM)
In the absence of delay, Cutkosky (2019) introduces meta- Wisr | max(0, (rugp + hiss )/ $)981

algorithms for imbuing learning procedures with optimism o .
while remaining robust to inaccurate hints; however, unlike2nddelayed optimistic regret matchingbORM+)

OFTRL and SOOMD, the procedures of Cutkesky requIre \ . = w1 /%, Wi &for ho = wo! 0, (DORM+)
separate observation ef+; and eachy;, making them

o
) - . $ 1 95 1
unsuitable for our delay-to-optimism reduction. Wi | max O,wi™ " +(rgp + hea ! h)/$ 07,

Each algorithm makes use of an instantaneous regret vector
re ! 19, w{&! g; that quantibes the relative performance

The online learning algorithms introduced so far all include©f each expert with respect to the play and the linearized

a regularization parameté. In theory and in practice, l0ss subgradierg;. The updates also include a parameter
these algorithms only achieve low regret if the regularizad $ 2 and its conjugate exponept= g/(q! 1) thatis
tion parametes is chosen appropriately. In standard FTRL, Set to recover the minimax optimal scaling of regret with

for example, one such setting that achieves optimal regréhe number of experts (see Cor. 9). We note that DORM
. B T g i ) and DORM+ recover the standard RM and RM+ algorithms
is$ = gy This choice, however, cannot be whenp =0,$=1,q=2,andh, = 0, 't.

used in practice as it relies on knowledge of all future un-

observed loss subgradients. To make use of online learning.1. Tuning-free Regret Bounds

algorithms, the tuning paramet®iis often set using coarse
upper bounds on, e.g., the maximum possible subgradie
norm. However, these bounds are often very conservativ
and lead to poor real-world performance.

3.3. Tuning Regularizers with Optimism and Delay

H’p bound the regret of the DORM and DORM+ plays, we
rove that DORM is an instance of ODFTRL and DORM+
IS an instance of DOOMD. This connection enables us
to immediately provide regret guarantees for these regret-
In the following sections, we introduce two strategies formatching algorithms under delayed feedback and with opti-
tuning regularization with optimism and delay. Sec. 4 in-mism. We Prst highlight a remarkable property of DORM
troduces the DORM and DORM+ algorithms, variants ofand DORM+ that is the basis of their tuning-free nature.

ODFTRL and DOOMD that arentirely tuning-freeSec. 5  Under mild conditions:
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The normalized DORM and DORM+ iterates to selecting a robus}) 3,23 regularizer (Gentile, 2003) for
areindependenbf the choice of regularization the underlying ODFTRL and DOOMD problems.
parametef.

Related work  Without delay, Farina et al. (2021) inde-
Lemma 7 (DORM and DORM+ are independent 8. If pendently developed optimistic versions of RM and RM+
the subgradieng; and hinth,.; only depend o through by reducing them to OFTRL and a two-step variant of opti-
(Ws, $9° 1w, gsg 1, hs)set and (ws, $% 1w, gs, hs)set mistic OMD (1). Unlike SOOMD, this two-step optimistic
respectively, then thBORM andDORM+ iterates(w;); 1  OMD requires separate observationgef,; andg;, mak-
are independent of the choice®f 0. ing it unsuitable for our delay-as-optimism reduction and

resulting in a different algorithm from DORM+ even when
Lem. 7, proved in App. E, implies that DORM and DORM+ D = 0. In addition, their regret bounds and prior bounds
areautomaticallyoptimally tuned with respect t, even  for RM and RM+ (special cases of DORM and DORM+
when run with a default value & = 1. Hence, these with q=2) have suboptimal regret when the dimensibn
algorithms are tuning-free, a very appealing property foiis large (Bowling et al., 2015; Zinkevich et al., 2007).
real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal 5. Self-tuned Learning with Optimism
regret scaling under delay, we connect them to ODFTRL and Delay

and DOOMD operating on the nonnegative orthant with a ) . . .
special surrogate lodb (see App. D for our proof): In this section, we analyze an adaptive version of ODFTRL

) ) with time-varying regularizatiof;# and develop strategies
Lemma 8 (DORM is ODFTRL and DORM+ is DOOMD) o setting$; appropriately in the presence of optimism
The DORM and DORM+ iterates are proportional to

and delay. We begin with a new general regret analysis of

ODFTRLandDOOMDitergtes respectively with/ | R¢ optimistic delayecidaptiveFTRL (ODAFTRL)
#(w)= 1)w)2, andloss(w) = %! r & _

Weer = argmin %pesp + hesr , W&+ $41 #(W)
Lem. 8 enables the following optimally-tuned regret bounds wiw (ODAFTRL)

for DORM and DORM+ run with any choice &:

Corollary 9 (DORM and DORM+ regret) Under the as- Whereh., # RY is an arbitrary hint vector revealed before
sumptions of Lem. 7, for all # - 451 and any choice of Wi+1 IS generatedt is 1-strongly convex with respect to a

$ > 0, theDORM and DORM+ iteratesw; satisfy norm) 4, and$; $ Ois a regularization parameter.
. . Theorem 10(ODAFTRL regret) If # is nonnegative and
Regret (u) + ..iQfO U5+ ﬁ t=1 Dra $; is non-decreasing in, then,' u # W, the ODAFTRL
& iteratesw, satisfy

Wh LT 26 (gs1) | T
e bg + LD be,(

25D t=1 t=1 b

|
Regref (u) + $r#(u)+ [, min(2, ae ) with
|
whereht+1 ! rrgp+1: v and, foreactc# [2," ], ber ! hube()he! t:tw Os)+,)0t)+) and 0(/2)
. . ! 0
ap | diam(W)min he! © (igp0s),) g0

DORM !
be “E" hube)h ! Li5p re)e)r)c) and
(DORM+) Py 2 The proof of this result in App. G builds on a new regret
bie = "hubef)he! o ispTs)e o .
' h bound for undelayed optimistic adaptive FTRL (OAFTRL).
)Tisp + Ner b Ne)e). In the absence of delayp( = 0), Thm. 10 strictly im-

. o _ in g | proves existing regret bounds (Rakhlin & Sridharan, 2013a;

If, in add|t|orl,L q argmin ‘l!' 2 %% (1 1), then Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL
Regret (u) + (2log,(d)! 1) tT=1 be( . by proyiding tighter guarantees whenever the hinting error
Yhe! tS:t$D gt) - is larger than the subgradient magni-

Cor. 9, proved in App. F, suggests a natural hinting strategyude ) g;)-. In the presence of delay, Thm. 10 benebts
for reducing the regret of DORM and DORM+: predict the photh from robustness to hinting error in the worst case
sum of unobserved instantaneous regrets s, r's. We  and the ability to exploit accurate hints in the best case.
explore this strategy empirically in Sec. 7. Cor. 9 also high-The bounded-domain factoes strengthen both standard
lights the value of thej parameter in DORM and DORM+:  OAFTRL regret bounds and the concurrent bound of Hsieh
using the easily computed valge= argmin ;. , d*% (qf! etal. (2020, Thm. 1) whediam(W ) is small and will en-

1) yields the minimax optimal log,(d) dependence of re- able us to design practic$-tuning strategies under delay
gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabonawithout any prior knowledge of unobserved subgradients.
& Pal, 2015). By Lem. 8, setting in this way is equivalent We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound thedelayed AdaHedge-stylddaHedgeD) sequence
I
1 t$D

Setting aside the;r bounded—domainéactors iNnThm. 10 $i+1 = 5 24 for (AdaHedgeD)
“
for now, the adaptive sequenée = m is & ! min(Frsg (We,$t) ! Fron (W, $t), %, we ! W&
known to be a near-optimal minimizer of the ODAFTRL Fror (Wi, $0) ! Fraa (W, $) + %, Wi ! W08+
regret bound (McMahan, 2017, Lemma 1). However, th|sWith @ | aramin E $ 3
value is unobservable at tinte A common strategy is to thoargming, w Fre (W, $0), )
. Tisos1 W; ! argmin Fier (W, $) +
play the conservative valul = (D’fl)SE:?;# e bsr t g W(!)/W% te1 (W, $t)
- MiN(ggga oo D%t ! Gso, W&

whereB is a uniform upper bound on the unobserbeg
terms (Joulani et al., 2016; McMahan & Streeter, 2014). Inand  F+1 (W, $;) ! $i# (W) + %11, W&
practice, this requires computing arpriori upper bound . .
on any subgradient norm that could possibly arise and ofter:{e#:a'tse;gggsef?/a“ve’ then, for all # W, the ODAFTRL
leads to extreme over-regularization (see Sec. 7). $ %
Regret (u) + ~4) +1

&, %
2max, rjaspasiF t th1 a2 +2%r

As a preliminary step towards fully adaptive setting$gf
we analyze in App. H a negelayed upper boun(DUB)

tuning strategy which relies only on obserdeg: terms
and does not require upper bounds for future losses.

Remarkably, Thm. 12 yields a minimax optimal
Theorem 11(DUB regret) Fix %> 0, and, fora;r ,btr O( (D +1)T + D) dependence on the delay parameter
as in(2), consider thelelayed upper bour®UB) sequence  and nearly matches the Thm. 5 regret of the optimal constant
_ 9 $ tuning. Although this regret bound is identical to that in
S = gganaxj &13D$13$D+1:jF (DUB)  Thm. 11, in practice th&; values produced by AdaHedgeD
1 5D a2 +20fF . can be orders of magnitude smaller than those of DUB,
# = TF ’ granting additional adaptivity. We evaluate the practical

If # is nonnegative, then, for all # W , the ODAFTRL  implications of thes&; settings in Sec. 7.

iteratesw, satisfy As a bnal note, whet is bounded otJ, we recommend
Regret (u) + $% . l% choosing¥%= su.pu!.U #(u) 50! thdat! ;”) + 1. For negative
&, % entropy regularizatio# (u) = i=1 Uj In(u;) +In( d) on

2max, rj&spas1F T tT=1 aZr +2%r . the simplexd = W = - 441, thiswields%= In( d) and a

regret bound with minimax optimal In(d) dependence on

As desired, the DUB setting &; depends only on previ- d (Cesa-Bianchi & Lugosi, 2006; Orabona &p2015).

ously observed;r andb.r terms and achieves optimal Related work Our AdaHedgeD& terms differ from
regret scaling with the delay peri@l. However, the terms standard AdaHedge increments (see, e.g., Orabona, 2019,
a.r ,bir are themselves potentially loose upper bounds foiSec. 7.6) due to the accommodation of delay, the incorpora-
the instantaneous regret at timdn the following section, tion of optimism, and the inclusion of the Pnal two terms in
we show how the DUB regularization setting can be rebnedhemin. These non-standard terms are central to reducing
further to produce AdaHedgeD adaptive regularization. the impact of delay on our regret bounds. Prior and con-
current approaches to adaptive tuning under delay do not
5.2. Rebned Tuning with AdaHedgeD incorporate optimism and require an explicit upper bound
. on all future subgradient norms, a quantity which is often
As noted by Erven et al. (2011); de Rooij et al. (2014),gifpcylt to obtain or very loose (McMahan & Streeter, 2014;
Orabona (2019), the effectiveness of an adaptive regulafy|anj et al., 2016; Hsieh et al., 2020). Our optimistic al-
ization setting®; that uses an upper bound on regret (Sucrborithms, DUB and AdaHedgeD, admit comparable regret

asbyr ) relies heavily on the tightness of that bound. Ing,arantees (Thms. 11 and 12) but require no prior knowl-
practice, we want to sé using as tight a bound as possi- edge of future subgradients.

ble. Our next result introduces a new tuning sequence that
can be used with delayed feedback and is inspired by thsg . . .
popular AdaHedge algorithm (Erven et al., 2011). It makes2- L€a@rning to Hint with Delay

use of the tightened regret analysis underlying Thm. 10 t\g \ve have seen, optimistic hints play an important role in

enable tighter settings & compared to DUB, while still - 4jine learning under delay: effective hinting can counteract
controlling algorithm regret (see proof in App. ). the increase in regret under delay. In this section, we con-
Theorem 12(AdaHedgeD regret)Fix %> 0, and consider sider the problem of choosing amongst several competing



Online Learning with Optimism and Delay

hinting strategies. We show that this problem can again besubgradient hints, spHy) ( is O(D + 1). Thus, for this
treated as a delayed online learning problem. In the folehoice of hinter loss, theubef(y,);) term isO((D + 1) 3),
lowing, we will call the original online learning problem and the hint learner suffers on@(TY4(D + 1) %¥4) ad-
the Obase problemO and the learning-to-hint problem tlational regret from learning to hint. Notably, this addi-
Ohinting problem.O tive regret penalty i©( (D +1)T) if D = O(T) (and

of (D+1)T)whenD = o(T)), so the learning to hint

Suppose that, at timg we observe the hing; of m differ- e ,
strategy of Thm. 13 preserves minimax optimal regret rates.

ent hinters arranged intoch. m matrixH;. Each column

of H, is one hinterOs best estimate of the sum of missingelated work Rakhlin & Sridharan (2013a, Sec. 4.1)

loss subgradientgs p::. Our aim is to output a sequence propose and analyze a method to learn optimism strategies

of combined hint$ (" 1) ! H¢' ¢ with low regret relative  for a two-step OMD base learner. Unlike Thm. 13, the

to the best constant combination strateg§ ! ! - ms1  approach does not accommodate delay, and the analyzed

in hindsight. To achieve this using delayed online learningregret is only with respect to single hinting stratedies

we make use of a convex loss functik@ ) for the hint ~ {g;};, () rather than combination strategies# - ms 1.

learner that upper bounds the base learner regret.

Assumption 1 (Convex regret bound)For any hint se- 7. Experiments

quence(hy){.; andu # !, the base proplem admits the
Pttt

regret bouncRegret (u) + Co(u)+ Ci(u) [, fe(h)
for C1(u) $ 0and convex functionfs independent ofi.

We now apply the online learning techniques developed
in this paper to the problem of adaptive ensembling for
subseasonal forecasting. Our experiments are based on
As we detail in App. K, Assump. 1 holds for all of the the subseasonal forecasting data of Flaspohler et al. (2021)
learning algorithms introduced in this paper. For examplethat provides the forecasts 6f= 6 machine learning and

by Cor. 9, if the base lgarner is DORM, we may choosegPhysics-based models for both temperature and precipita-
Co(U) = 0, Cy(u) = R tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In
0 - ’ 1 -

2(p3 1) operational subseasonal forecasting, feedback is delayed;
functionf(h¢) = )re)g)he ! tS:t$ bls)g$ big? models maké = 2 or 3 forecasts (depending on the fore-
8ast horizon) before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of input models and compete with the best

and theO(D) convex

For any base learner satisfying Assump. 1, we choos
lt(" ) = f¢(H¢" ) as our hinting loss, use the tuning-free
DORM+ algorithm to output the combination weight ) o .

gon u'pu ination welgive input model over a year-long prediction period € 26

on each round, and provide the him{(' ) = H;' { to the . S .
base learner. The foITowing result, pEO\t/()ad in Aptp J, showssem'mOnthly dates). The loss function is the geographic

that this learning to hint strategy performs nearly as well agtﬁowe?n S?Juire(;isetrr:)r (RMSE) acréest locations in
the best constant hint combination strategy in restrospect. € viestern United States.

Theorem 13(Learning to hint regret) Suppose the base We evaluate the relative merits of the delayed online learning
problem satisbes Assump. 1 and the hinting problem itechniques presented by computing yearly regret and mean

solved withDORM+ hint iterates' ¢, hinting losses; (' ) = RMSE for the ensemble plays made by the online leaner

fi{(H¢' ), no meta-hints for the hinting problem, agd- in each year from 2011-2020. Unless otherwise specibed,

argming:. , m24d’ (g1 1). Then the base problem with all online learning algorithms use thecent _g hint gs,

hintsh(' ) = H¢' { satisbes which approximates each unobserved subgradient at time
& , t with the most recent observed subgradiggty s 1. See

Regret (u) + Co(u) + Cy(u) infgyy th1 fe(he(' ) App. L for full experimental details, App. N for algorithmic
$ 1 I rg1 %4 details, and App. M for extended experimental results.
+ Cy(u) (2logy(m) ! ll)(z(T + o1 hube((i,)1)) c i ith the best inout model  The ori b
! ompeting wi e bestinput mode e primary ben-
for (1 4D +1) L50)*)F . FHMC D gop ot o lenmine mhie Seting is its ab1ity (o ach
| ebt of online learning in this setting is its ability to achieve
and )¢! 4*sp)( ;:w 5 )¥s)( - small average regret, i.e., to perform nearly as well as the
best input model in the competitor d¢twithout knowing
To quantify the size of this regret bound, con-which is bestin advance. We run our three delayed online

sider again the DORM base learner witla(h;) = learnersNDORM, DORM+, and AdaHedgeDNon all four
)re)g) he! ;=I$D rs)q- By Lem. 26 in App. K, subseasonal prediction tasks and measure their average loss.

1 :
)*)( + A7) H)()r)qfor)He) the maximum ab- o average yearly RMSE for the three online learning al-
solute entry ofH;. Each column oH; isasumD +1  45ithms and the six input models is shown in Table 1. The

*The alternative choicg (h¢) = 1"h ! ! . p0s"Zalso DORM+ algorithm tracks the performance of the best input

bounds regret but may have siz¢D 2) rather tharO (D). model for all tasks except Temp. 5-6w. All online learning
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